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Abstract
We examine the van der Waals interaction between mobile plasma electrons in a
narrow quantum well nanostructure and a quantum dot atom. This formulation
of the van der Waals interaction exhibits it to second order as the correlation
energy (self-energy) of the dot-atom electrons mediated by the image potential
arising from the dynamic, nonlocal and spatially inhomogeneous polarization
of the quantum well plasma electrons. This image potential of the quantum-
well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous
screening function of the quantum well, which involves the space–time
matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent
dielectric function. The latter matrix inversion is carried out exactly, in closed
form, and the van der Waals energy is evaluated in the electrostatic limit to
dipole–dipole terms.

PACS numbers: 68.65.−k, 73.20.−r, 34.30.+h, 12.20.−m

1. Introduction: atom–surface van der Waals interaction and the plasma image

The van der Waals interaction between an atom and surface is based on the Coulomb
interaction between the atomic electrons and the mobile electrons within the surface, and
it excludes the possibility of sharing or exchanging electrons by penetration of the atomic
electron wavefunctions into the surface, or vice versa. Moreover, the theory of van der Waals
attraction assumes that the atom and its electrons are far enough from the mobile electrons
within the surface so that exchange effects are negligibly small. These qualitative statements
apply to all van der Waals (vdW) interactions, including atom–atom, as well as atom–surface.

While all electrons are indistinguishable in principle, the atomic electrons may be thought
of as a group distinct from the mobile surface electrons if their separation is large enough so
that exchange effects and wavefunction penetration (tunnelling, sharing) are small. On this
basis, we write ψ+

a , ψa to represent creation/annihilation operators for bound electrons of the
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atom, and ψ+
m,ψm to represent the corresponding operators for mobile electrons of the surface,

with

ψ = ψa + ψm; ψ+ = ψ+
a + ψ+

m.

Considering them to be mutually independent, we take ψ+
a , ψa to anticommute with ψ+

m,ψm

individually. Our nonrelativistic treatment for the Coulomb interaction, V , is based on the
usual two-body part of the Hamiltonian:

H(2) = 1

2!

∫
d(3)x′

∫
d(3)x′′ (ψ+

a (x′, t) + ψ+
m(x′, t)

) (
ψ+

a (x′′, t) + ψ+
m(x′′, t)

)
×V(x′ − x′′)(ψa(x′′, t) + ψm(x′′, t))(ψa(x′, t) + ψm(x′, t)). (1)

Of the 16 possible products in the integrand of equation (1), one represents the Coulomb
interactions (and internal correlations) within the subsystem of atomic (a) electrons, Haa , and,
separately, there is a similar one, Hmm, for the Coulomb interactions (and internal correlations)
within the subsystem of mobile (m) electrons of the surface. Correspondingly,

H
(2)

{aa
mm} = 1

2!

∫
d(3)x′

∫
d(3)x′′ψ+

{am}(x
′, t)ψ+

{am}(x
′′, t)V(x′ − x′′)ψ{am}(x′′, t)ψ{am}(x′, t). (2)

Of the remaining 14 possible products, eight involve products of three operators of one
subsystem and just one of the other (for example, ψ+

mψ+
a Vψaψa , etc). We take these to be

negligible since such a Hamiltonian term would transfer electrons singly from the atom to
the surface or vice versa, which is excluded from our considerations in accordance with the
above remarks. The remaining six products involve two operators of the a-electrons and
two of the m-electrons. Of these, two are of the type ψ+

a ψ+
a Vψmψm or ψ+

mψ+
mVψaψa , which

would transfer electrons in pairs from the atom to the surface or vice versa, which is similarly
excluded. Of the remaining four products two are described by

ψ+
{am}(x

′, t)ψ+
{ma }(x

′′, t)V(x′ − x′′)ψ{am}(x′′, t)ψ{ma }(x′, t), (3)

which would annihilate a surface electron at x′ while creating an atomic electron at x′ in its
place and simultaneously annihilate an atomic electron at x′′ while a mobile surface electron is
created in its place at x′′, etc. Again, these two terms exchange atomic and surface electrons,
processes which are excluded from our present considerations. The final two terms involve
just the product of the density operator ρa for a-electrons with that of m-electrons, ρm, and
vice versa, and the two are actually the same since the anticommutation of ψa(x′, t) through
ρm(x′′, t) invokes two minus signs, hence they commute, as do ρa(x′, t) and ρm(x′′, t), etc.
Thus the ρaρm term doubles, cancelling the prefactor 1

2! in this part of H(2). In summary, vdW
interaction involves the following Hamiltonian:

H(2) = H(2)
aa + H(2)

mm + H(2)
am , (4)

where

H(2)
am =

∫
d(3)x′

∫
d(3)x′′ρa(x′, t)V(x′ − x′′)ρm(x′′, t). (5)

We will only treat those aspects of atom–surface van der Waals interaction here which
illustrate the far reaching utility of the dynamic nonlocal dielectric screening concept. Consider
first the Hamiltonian for the instantaneous Coulomb interaction of the atomic electrons written
in the form:

H(2)
aa = 1

2

∫
d(3)x′

∫
d(3)x′′

∫
dt ′′ψ+

a (x′, t ′)ψa(x′, t ′)V(x′ − x′′)δ(t ′ − t ′′)ψ+
a (x′′, t ′′)ψa(x′′, t ′′).

(6)
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In a first approximation, the associated energy (with correlations of the atomic electrons in the
presence of the nuclear potential which binds the electrons) may be written as the expectation
value of H(2)

aa in the ground state of the atom. To develop an approximation directed at
incorporating the role of H(2)

am (equation (5)) without undertaking a formal perturbation theory
[1] (which leads to the same result), we replace V(x − x′)δ(t − t ′) in equation (6) by the
effective potential between atomic electrons, Veff(x′, x′′, t ′ − t ′′), part of which is generated
by Coulomb interaction between atomic electrons and the surface electrons, i.e. the nonlocal
dynamic image potential, Vimage(x′, x′′, t ′ − t ′′), felt by the electrons of the atom. Thus, we
write their corresponding part of equation (6) as a ‘van der Waals’ term, HvdW, given by

H
(2)
vdW = 1

2

∫
d(3)x′

∫
d(3)x′′

∫
dt ′′ψ+

a (x′, t ′)ψa(x′, t ′)

×Vimage(x′, x′′, t ′ − t ′′)ψ+
a (x′′, t ′′)ψa(x′′, t ′′). (7)

Estimating the van der Waals interaction energy contribution from this term as the ground
state expectation value

〈
H

(2)
vdW

〉
, we have

EvdW ∼=
〈
H

(2)
vdW

〉 = −1

2

∫
d(3)x′

∫
d(3)x′′

∫
dt ′′Vimage(x′, x′′, t ′ − t ′′)

×Ga
2(x

′′t ′′, x′t ′; x′′t ′′+, x′t ′+). (8)

Here, Ga
2 is the two-particle Green’s function of the atomic electrons, including the full

complement of intra-atom interactions, but with no effects from the surface electrons, averaged
in the ground state of the atom

∣∣�a
0

〉
. The image potential, Vimage, due to the polarization of the

surface electron plasma by the Coulomb field of a point charge outside may be written in terms
of the Gm

2 function of the plasma of surface electrons using the inverse dielectric (screening)
function Km of the surface plasma. Discarding Gm

1 terms and δ-terms that are not pertinent to
this discussion, we have

Km(1, 2) → i
∫

d3V(1 − 3)Gm
2 (3, 2; 3+, 2+)

= i
∫

d(3)xivV(x′ − xiv)Gm
2 (xivt ′, x′′t ′′; xivt ′+, x′′t ′′+) (9)

where Gm
2 includes the effects of mobile electron–electron interactions within the surface, and

V is the unscreened Coulomb potential. The corresponding image potential, Vimage, is

Vimage(x′, x′′, t ′ − t ′′) =
∫

d(3)x′′′[Km(x′, x′′′; t ′ − t ′′)V(x′′′ − x′′)] − V(x′ − x′′)

= i
∫

d(3)x′′′
∫

d3xivV(x′ − xiv)Gm
2 (xivt ′, x′′′t ′′′; xivt ′+, x′′t ′′′)V(x′′′ − x′′)

−V(x′ − x′′), (10)

which yields EvdW in an alternative form as

EvdW = − i

2

∫
d(3)x′

∫
d(3)x′′

∫
d(3)x′′′

∫
d(3)xiv

∫
dt ′′V(x′ − xiv)

×Gm
2 (xivt ′, x′′′t ′′′; xivt ′+, x′′t ′′′+)V(x′′′ − x′′)Ga

2(x
′′t ′′, x′t ′; x′′t ′′+, x′t ′+)

− direct non-image counterpart. (11)

Noting that equation (11) is symmetric under the atom ↔ surface interchange, it is readily seen
that another contribution to vdW energy identical to equation (11) comes from an analogous
treatment of H(2)

mm in place of H(2)
aa , eliminating the 1/2 prefactor. This result can also be

obtained [1] using straightforward perturbation theory to second order in H(2)
am (equation (5)).
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As in perturbation theory, Gm
2 and Ga

2 (alternatively, Km and Ga
2) are to be determined in

the absence of atom–surface coupling. It is convenient to write the result in the form of
equation (8) (but without the eliminated 1/2 prefactor), as

EvdW = −
∫

d(3)x′
∫

d(3)x′′
∫

dt ′′Vimage(x′, x′′, t ′ − t ′′)Ga
2(x

′′t ′′, x′t ′; x′′t ′′+, x′t ′+), (12)

which suggests interpreting EvdW in terms of a self-energy of the atomic electrons due to
screening of their Coulomb interaction by the surface electrons. Here, we can fruitfully
employ the determination of Veff −V = Vimage in the presence of dynamic, nonlocal screening
by the mobile surface electrons as discussed below.

2. Effective potential and the 3D screening function of the 2D electron plasma of the
quantum well

The effective potential Veff(1) at a space–time point 1 = (r1, t1) generated by the Coulomb
potential V(2) impressed at 2 = (r2, t2) by an atomic electron is associated with polarization
of the 2D mobile electrons of the quantum well,

Veff(1) =
∫

d(4)2Km(1, 2)V(2), (13)

where Km(1, 2) is the 3D screening function of the 2D plasma inverse to its direct dielectric
function ε(3, 2) in a 3D space–time matrix sense∫

d43Km(1, 3)ε(3, 2) = δ4(1, 2). (14)

Here, ε(3, 2) is the direct dielectric function of the 2D plasma in 3D real space–time
representation. One must also recognize that there is a density perturbation involved in
the response dynamics, such that

ρ(1) =
∫

d43R(1, 3)Veff(3)

=
∫

d43
∫

d44R(1, 3)Km(3, 4)V(4) (15)

with R(1, 3) = δρ(1)/δVeff(3) as the density-perturbation response function. Writing ε(3, 2)

in terms of the polarizability α(3, 2), equation (14) becomes an RPA-type integral equation

Km(1, 2) = δ4(1 − 2) −
∫

d43α(1, 3)Km(3, 2). (16)

The polarizability α(1, 3) can be expressed in a form which describes both the free-electron
response and an additive static background contribution (V is the interelectron Coulomb
interaction of the plasma, and α0 = ε0 − 1 is the additive background polarizability):

α(1, 3) = −
∫

d44V(1 − 4)R(4, 3) + α0δ
4(1 − 3). (17)

This yields

Km(1, 2) = 1

ε0
δ4(1 − 2) +

1

ε0

∫
d43

∫
d44V(1 − 4)R(4, 3)Km(3, 2). (18)

In the RPA, R (4, 3) is the lowest ring diagram and the integral equation (18) is just the
sum of ring diagrams. Considering translational invariance in the r = (x, y) plane of the
quantum well walls and in time (but not for z), we Fourier transform

Km(1, 2) = Km(r1 − r2, z1, z2; t1 − t2) → Km(p, z1, z2;ω), (19)

with respect to space r1 − r2 → p and time t1 − t2 → ω.
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To determine the 3D screening function Km(p, z1, z2;ω) that is the inverse of the 2D
plasma dielectric function ε(p, z1, z2;ω) in 3D space, we employ the inversion condition of
equation (14) in the form∫

dz2K (p, z1, z2;ω) ε (p, z2, z3;ω) = δ (z1 − z3) , (20)

which may be applied writing ε (p, z1, z2;ω) as

ε (p, z1, z2;ω) = δ (z1 − z2) + α (p, z1, z2;ω) (21)

in terms of the quantum well polarizability, α (p, z1, z2;ω) . For electron motion confined to a
single 2D plane sheet, the density-perturbation response function has its z arguments localized
to the sheet by positional δ-functions of the form

R(p, z1, z2;ω) = δ(z1)δ(z2)R
2D(p, ω). (22)

Here, R2D (p, ω) describes the electron density perturbation response properties on the
2D sheet, such that the 2D electron polarizability on the sheet is given by α2D (p, ω) =
−R2D (p, ω) /p (where we introduced the 2D Fourier transform in the Coulomb potential in
equation (17)). With this in view, we have

ε (p, z1, z2;ω) = ε0δ (z1 − z2) + δ (z2) α2D (p, ω) e−p|z1|, (23)

where p = |p| and ε0 = 1 + α0 for the background. We attempt inversion in the form

Km(p, z1, z2;ω) = 1

ε0
δ(z1 − z2) +

1

ε0
δ(z2) e−p|z1|[K̃2D(p, ω) − 1]. (24)

The determination of K̃2D(p, ω) is carried out by requiring satisfaction of the inversion
condition in the form of equation (20). Equating coefficients of like positional delta functions,
we obtain

K̃2D (p, ω) =
(

1 +
α2D (p, ω)

ε0

)−1

≡ [̃ε2D(p, ω)]−1. (25)

α2D (p, ω) was determined by Stern [2] for null magnetic field and division by ε0 corresponds
to putting V → Ṽ = V/ε0 or e2 → ẽ2 = e2/ε0. A simple example of the utility of
equation (24) is provided in the determination of the statically screened Coulomb potential
sited at (0, 0, z0) in 3D space, with the electron sheet on the 2D plane z = 0. Taking ε0 → 1,
we have the shielded potential as

V (r, t → ∞) =
∫

d2p

(2π)2
eip·r

∫
dz′Km(p, z, z′;ω → 0) e−p|z′−z0|/p

×
∫

d2p

(2π)2

eip·r

p

(
e−p|z−z0| − e−p(|z|+|z0|) α2D (p, ω → 0)

1 + α2D (p, ω → 0)

)
. (26)

For a perfect metal sheet α2D → −∞, this yields a perfect image field of relative strength −1
on the same side of the sheet as the Coulomb site (same sign for z, z0); and it also yields a
completely shielded null result at points on the other side of the sheet (different signs for z, z0,
as one should expect).

3. Nonlocal dipolar van der Waals interaction of an atom and a 2D quantum well:
magnetic field effects

The atomic electron Ga
2 function involved in EvdW has the form

Ga
2 → 〈

�a
0

∣∣ρa(x′′, t ′′)ρa(x′, t ′)
∣∣�a

0

〉
. (27)
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Recognizing that the atom has a fixed number of electrons and is electrically neutral (in the
absence of ionization), we denote the energy eigenstates of the atomic electrons by

∣∣�a
n

〉
, with

ground state
∣∣�a

0

〉
. These states of the atomic electrons bear the full complement of correlations

due to electron–electron interactions of the electrons of the atom. Their completeness is
expressed by

1 =
∑

n

∣∣�a
n

〉 〈
�a

n

∣∣ , (28)

so that

Ga
2(x

′′t ′′, x′t ′; x′′t ′′+, x′t ′+) =
∑

n

〈
�a

0

∣∣ ρa(x′′, t ′′)
∣∣�a

n

〉 〈
�a

n

∣∣ ρa(x′, t ′)
∣∣�a

0

〉
. (29)

Employing an atomic electron time translation operator eiHa(t
′−t ′′) to bring the times of the two

density operators into coincidence, we have

Ga
2(x

′′t ′′, x′t ′; x′′t ′′+, x′t ′+) =
∑

n

〈
�a

0

∣∣ ρa(x′′, t ′′)
∣∣�a

n

〉 〈
�a

n

∣∣ eiHa(t
′−t ′′)

×ρa(x′, t ′′) e−iHa(t
′−t ′′) ∣∣�a

0

〉
, (30)

and since

Ha

∣∣�a
n

〉 = Ea
n

∣∣�a
n

〉
, (31)

we have

Ga
2(x

′′t ′′; x′t ′; x′′t ′′+; x′t ′+) =
∑

n

〈
�a

0

∣∣ ρa(x′′, t ′′)
∣∣�a

n

〉 〈
�a

n

∣∣ ρa(x′, t ′′)
∣∣�a

0

〉
ei(Ea

n−Ea
0 )(t ′−t ′′).

(32)

Understanding that both density operators and the energy eigenstates are evaluated at the same
time so that the matrix elements are independent of time, we write〈

�a
0

∣∣ ρa(x′′, t ′′)
∣∣�a

n

〉 = 〈ρa(x′′)〉0n

and

ωa
no = Ea

n − Ea
0 ,

whence,

Ga
2(x

′′t ′′; x′t ′; x′′t ′′+; x′t ′+) =
∑

n

′〈ρa(x′′)〉0n〈ρa(x′)〉n0 eiωa
no(t

′−t ′′). (33)

(The prime on 	 → 	′ indicates that the n = 0 term is excluded since it has no time
dependence and yields a constant, static contribution, which is irrelevant to the van der Waals
interaction.) Substitution of this into equation (12) yields EvdW in terms of the Fourier time
transform of Vimage(t

′ − t ′′) → Vimage(ω) as

EvdW =
∫

d3x′
∫

d3x′′
∫ ∞

−∞

dω

2π i
Vimage(x′, x′′;ω)

∑
n

′
( 〈ρa(x′′)〉0n〈ρa(x′)〉n0

ω − ωa
no

)
, (34)

where we have taken account of nonlocality in time in performing the time integration.
Considering spatial translational invariance in the lateral plane x̄ = (x, y) → p̄ and using
Vimage(z

′, z′′; p̄, ω) obtained from equations (24) and (25), we obtain the result for EvdW using
a multipole expansion mandated by the spatially confined distribution of the atomic electrons.
To dipole–dipole terms, it is given by (Don is the matrix element of the dipole moment operator)

EvdW = − 4

3h̄ε0

∑
n

′ ∫ ∞

0

dω

2π i

ωno |Don|2
ω2 − ω2

no

∫ ∞

0
dp p2 e−2p|Z| α2D (p, ω) /ε0

1 + α2D (p, ω) /ε0
, (35)

where |Z| is the distance of the atom from the 2D planar quantum well.
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Equation (35) is a useful point of departure to determine both local and nonlocal
structure of the van der Waals interaction in a magnetic field normal to the quantum well.
Expanding equation (35) in inverse powers of |Z| under conditions of low density (such that
ωp < ωc, ωno), and using the magnetic field dependent 2D polarizability [3, 4] we obtain (ωc

is the cyclotron frequency, which can exceed the 2D plasma frequency in semiconductors)

E
(2)
vdW = πe2n2D

4h̄mε2
0

∑
n

′ |Don|2 ωno

{
1

|Z|4
1

ωcωno (ωc + ωno)

− 1

|Z|6
5σ

mn2Dω2
c

(
1

ωcωno (ωc + ωno)
− 1

2ωcωno (2ωc + ωno)

)}
, (36)

where n2D is the 2D equilibrium density, which may be expressed in terms of the Fermi
function f0(ω) as

n2D = 2
∫ ∞

0

dω

h̄2 f0(ω)

∫ i∞+δ

−i∞+δ

ds

2π i
eωs mh̄ωc

4π tanh (h̄ωcs/2)
. (37)

and σ is defined as

σ =
∫ ∞

0

dω

h̄2 f0(ω)

∫ i∞+δ

−i∞+δ

ds

2πi
eωs m(h̄ωc)

2

4π(tanh h̄ωcs/2)2
. (38)

It should be noted that the low-density approximation involved in obtaining
equation (36), namely ωp < ωc, ωno, precludes taking the limit ωc → 0 which would
falsely indicate divergencies. Equations (36)–(38) will be discussed more fully elsewhere.
They contain the full complement of both classical and quantum magnetic field effects due to
Landau quantization of orbitals. The first term on the right of equation (36) is due to local 2D
magneto-plasma response, and is proportional to |Z|−4. It is important to bear in mind that the
remaining terms (O(|Z|−6)) occur within the dipole–dipole approximation, devoid of higher
multipole moments. They arise in consequence of the nonlocal plasma character of the 2D
dielectric response. The formulation of van der Waals’ interactions employed here is readily
extended to Casimir forces, a subject of strong current interest [1, 5, 6].

Acknowledgments

NJMH gratefully acknowledges support from the US Department of Defense, DAAD 19-01-
1-0592, through the DURINT program of the Army Research Office.

References

[1] Horing N J M and Chen L Y 2002 Phys. Rev. A 66 042905
[2] Ando T, Fowler A and Stern F 1982 Rev. Mod. Phys. 54 437
[3] Horing N J M et al 1974 Phys. Lett. 48A 7
[4] Horing N J M and Yildiz M M 1976 Ann. Phys., NY 97 216
[5] Recati A, Fuchs J N, Peca C S and Zwerger W 2005 Phys. Rev. A 72 023616
[6] Contreras-Reyes A M and Mochan W L 2005 Phys. Rev. A 72 034102

http://dx.doi.org/10.1103/PhysRevA.66.042905
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1016/0003-4916(76)90226-8
http://dx.doi.org/10.1103/PhysRevA.72.023616
http://dx.doi.org/10.1103/PhysRevA.72.034102

	1. Introduction: atom--surface van der Waals interaction and the plasma image
	2. Effective potential and the 3D screening function of the 2D electron plasma of the quantum well
	3. Nonlocal dipolar van der Waals interaction of an atom and a 2D quantum well: magnetic field effects
	Acknowledgments
	References

